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A
- A non-model based estimation procedure is introduced. The
3 best estimate is defined to be the geometric center of the
e
‘q ¢ intersected error volume, and the error of the best estimate is
:ﬁ defined as the distance of the intersected error volume measured
& ' from the center. Khachian's algorithm is extended to find the
.

e best estimate. When the algorithm is viewed as a system of

:i nonlinear difference equations, conditions are established to
?, test the existence of periodic solutions. A stopping rule is
f{; also introduced. A strategy for finding the error of the best
!ﬂ estimate is described. Examples are given to illustrate the

g estimation procedure.
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1, INTRODUCTION

The goodness of an estimator is assessed conventionally by
both the bias and variance of the estimator. The true meaning of
the bias and variance of an estimator can not be fully grasped
unless the underlining model is accurately defined. Perhaps,
this is the reason why model reliability first introduced by
Akaike [1] has been widely accepted as an additional quantity for
assessing an estimator.

In reality, computability of bias, variance and model
reliability of an estimator is a serious question especially when
the underlining model is complicated. Some gqualitative answers
to this computability question have been documented in [2], (3],
and [4]. 1In particular, it has been shown in [3] that
observability is a necessary condition for the existence of an
unbiased estimate with bounded variance. Shall we give up if we
find that the system is not observable and there is no way to
compute the bias of the estimator? I would predict that most
people would not give up based on the evidence that abundant
Monte-Carlo simulation results have been reported in various
literatures. We certainly pay little attention to the simulation

results unless the model used is truly reliable that in turn, can

hardly be confirmed through simulations.
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:ﬁ In principle, a-priori information can be used to improve
T_ the quality of an estimator. At least three different incidents
?S described below prove on the contrary that a-priori information
.és actually hurts.
(i) The a-priori information is biased,
: (ii) It is used improperly, )
(iii) The model used is not reliable.
An example of case (ii) mentionded above has been examined in L
[4] for a nonlinear initial state estimation problem.
To put the above abstract description of the difficulty of a
{f conventional statistical estimation procedure into perspective,
: we shall confine ourself to the context of sensor calibration and
gf trajectory estimation problems from this point on. The proposed
- estimation procedure reported herein certainly can be applied to
ﬁ? various other problems as well. All examples given are related
;f; to sensors along the Western Test Range, Furthermore, sensor
,i biases and calibration constants are treated as interchangeable
332 terminologies.
;; In calibrating a sensor, the first step is to estimate the
\:: position as a function of time of a target. The target can be an
iZi inertial star, a satellite, a re-entry vehicle, or a calibration 1
'E; balloon etc. that can be tracked by calibrated sensors and the )
' sensor to be calibrated. Treating calibration constants as
;3_ unknowns, the calibration procedure can then be cast into an
Ei' inversion problem that relates the position of the target to the
2 2
%
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sensor tracking data. When some calibration constants are not
observable, the inversion problem does not have a unique
solution. Examples of these unobservable cases can be found in
[4] and [5].

The hypothetical scenario described as follows motivates the
study of non-model based estimation reported herein. A newly
designed radar system in the island of Roi-Namur needs to be
calibrated. A calibration balloon is launched and drifted across
the Kwajalein lagoon. There are one calibrated radar, and five
calibrated optical sensors as well as the new radar system along
the Kwajalein atoll that track the calibration balloon. The
motion model of a balloon certainly is not reliable.
Observability of calibration constants of the new radar is
questionable. Furthermore, for each calibrated sensor, a-priori
information is available but no guarantee about its
authenticity. The problem to be addressed is how to find a way
to calibrate the new radar based on all information available,

For simplicity, we assume that the calibration constants are
in terms of range, azimuth, and elevation biases.* The
c calibration problem posed above is therefore reduced to

estimating the position of the target at a fixed time instant

using all available information.

. * Actual calibration procedures are much more complicated than
. the assumption made here. Therefore, more than one point in
the space is needed.
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For each calibrated sensor, there is a best position
estimate with an error volume of the shape shown in Fig. 1, at

the fixed time based on all information available to the sensor.

c:

Fig. 1. The shape of an error volume.
Thus, we have five error volumes from optical sensors and one
error volume from the calibrated radar in the space. These error
volumes may or may not intersect. When there exist non-
intersecting error volumes, subjective opinions arise. To
maintain the argument as objective as possible, we shall assume
that the majority of the error volumes do intersect. We shall
define the position estimate of the target as the geometric
center of the intersected error volume, and the error of the
position estimate is defined as the distance of the intersected
error volume measured from the geometric center. In the sequel,
a rigorous mathematical treatment of the above description will
be formulated. A methodology of finding the position estimate

and its error is also described. Finally, examples are given.
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2. MATHEMATICAL FORMULATION

2.1. Description of a Polyhedron
The error volume of each sensor is shown in Fig. 1. For
mathematical tractability, we assume that the arcs AB (A'B') and
CD (C'D') are straight lines. Thus, the shape becomes a
prismatoid. The vertices of each prismatiod are given. A
polyhedron is formed by intersecting a number of prismatoids.
Following a consistent convention, the faces of a prismatoid can
be represented by a number of linear equations derived from the
given vertices, The polyhedron can therefore be described by a
matrix inequality given by
Ax<b (2.1)
where x = a 3 by 1 vector,
A = a 6n by 3 matrix, where n is the number

of prismatoids,

b = a é6n by 1 vector whose components are non-
negative,
&he ith row of A and b will be denoted by Aj and bj
respectively. The transpose of a matrix A is denoted by AT,
The Euclidean norm of a vector is denoted by l'.l'.

When there are prismatoids that do not intersect with the
rest of the prismatoids, contradicting inequalities exist in
(2.1). Redundant inequalities may also exist in (2.1) if one

prismatoid contains the other. Algorithms are available for

detecting both contradicting and redundant inequalities [6], [7].




The algorithm introduced in [7] will be used.

2.2 Khachian's Algorithm

Beginning with a point outside the polyhedron given by (2.1),
Khachian's algorithm can be used to find a point inside the
polyhedron. The basic method that Khachian follows is to
construct a minimum ellipsiod that contains one portion of another
ellipsoid cut by a hyperplane. An ellipsoid, E (x; C), can be
represented by its center x and a positive-definite matrix C given
by

E(x; ©) = {y: y =x +¢Cz ||z]|| <1} (2.2)
Initially, let x, be outside the polyhedron given by (2.1). and
E(xg/s Cy) be the ellipsiod so large that it contains the

polyhedron. The algorithm goes as follows.

Ck-1 AxT
Xk = Xg-1 - /——T-.“k
AkxCx-1Ak
(Ck-1 AT) (Ck-1 AT)T
Ck = Bk |Ck-1 - Yk
Ag Cx-1 ATk
1 +m gk
ak = ——————
m+ 1 (2.3)
(1 - gg2)m?
Bk =
m2-1
2a
Yk &
1 + gk
gk = (Ag Xk-1 - bky//ik Ck-1 Ak

where m = the dimension of xx, in our case m = 3.
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The volume of the ellipsoid is proportional to its determinant
(abbreviated by Det). A recursive relationship for the
determinants is given by

log (Det Cg)-.

(m-1) (1-gk)
= log (Det Ck-31) + m log Bk + log (2.4)

(m+1) (1l+gg)

The parameter gk measures the distance from the previous center
Xk-1 to the hyperplane Ax x = bg.
Several important situations are summarized as follows.
(i) If 'gk| > 1 then the hyperplane Ay x = by does not
intersect the polyhedron. Therefore, the corresponding
inequality is contradicting to others.
(ii) If ’gk| < 1 and xx.) is outside the hyperplane
Axx = bk, then gy > 0.
(iii) If xx-) is inside the hyperplane Axx = by then
gk < 0. If gk <'0 but xg.3 is outside the
polyhedron then Ag x < by is‘a redundant inequality.
Abundant literatures are available for detailed descriptions of
Khachian's algorithm.
Suppose that a point inside the polyhedron is found. The

point need not be the geometric center of the polyhedron. Since

the shape of the polyhedron can be very irregular, its geometric

center is tough to define. 1In the next section, we shall see that
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extending Khachian's algorithm into the polyhedron can arrive at a
satisfactory definition of the geometric center of a polyhedron.
3. BEST ESTIMATE AND ITS ERROR

3.1 Existence of Periodic Solutions

Let x; be the first point found inside the polyhedron and
E (xg; Cyp) be the corresponding ellipsoid containing the
polyhedron. Khachian's algorithm ensures that all xkx will
remain inside the polyhedron. However, the ellipsoid E(xk:
Ck) does not necessarily contain E (xk-1; Ck-1). From now
on, we shall treat (2.3) as a system of difference equations with
I?f initial condition (x5, Cy), and call (xx, Ck) as the solution
ﬁf; of the system. Furthermore, we shall assume that all inequalities
in (2.1) are compatible and relevant. The number of inequalities

is assumed to be N. After k reaches N, the first inequality is

called upon. We assign a new index N+1 to the first inequality
- and count on. Therefore, Ax is periodic with period N. The

p tollowing theorem establishes the situation for the existence of a
o periodic solution.

Therem 3.1 If there exists K such that both conditions described

below satisty then (Xk+nNr Ck+N) = (X, Ck) for all k > K.
(+) K > N, Det Cg = Det Cg_p (3.1)
(11) Either Cg > Ck-n or Ckg < Ck-nN

Proof: Since both Ckg and Cg.) are positive definite,

Minkowski's inequality [8]) is applied to obtain

Det [Ckg + Ck-N] > Det Cg + Det Cg_p (3.2)
8
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and equality attains if Ckx = A Cg.n where A is a non-negative
scalar, Based on (3.1), (3.2) and results in (9], we conclude
that Cx = Ck-N. Therefore, ggi:1 = gg-N+1+ that in turn,
implies

@K+l T @K-N+1

BK+1 = BK-N+1
and

YK+l ¥ YK-N+1°
Thus, Ck is periodic for all k > K. Since Ay is periodic with
period N, xx is also periodic for all k > N.
When a periodic solution exists, the polyhedron is symetric

: : . A
with repect to its center. The best estimate denoted by x is

given by
1 N
P S (3.3)
N k=K+1

Based on many empirical results, approximate periodic solutions do
exist, However, it seems to be beyond my ability to prove it
theoretically. The remainder of this subsection may be skipped
for those who believe the statement made above.

We shall now develop a criterion that can be used to detect

the ineqguality that when used will move the previous center of the

ellipsoid away from the center of the polyhedron.




Theorem 3.2 1If gk < - 1/m then E (xkx; Ckx) does not contain

E(Xk-17 Ck-1).
Proof: Since Ck-3) is positive-definite, it can be decomposed
into the form given by
Cx-1-1 = pT D
where D is a nonsingular matrix. Let F be an orthogonal matrix
such that
DTAkT
1EX]

Define an affine transformation T such that

8218

O O

z =T (x)

F D (x - xXk-1).

In z-domain, E (Xkx-); Ck-1) becomes a unit sphere centered at

the origin. The sphere projected on the plane of e, - e, is shown
in Fig. 2. The hyperplane Axx = by projected on the same

plane is also shown in Fig. 2. Note that akx is the distance

from xx-) to Xk, |gk| is ﬁhe distance from xx-3 to the

hyperplane Agxx = by, and (8x)~1/2 is the length of the

minor axis of E (Xx; Cx). If gk < - 1l/m then xi is

located in between xx_) and hyperplane Agx = bx. Further-

more, we have (8x)~1/2 < 1. Thus, E (xx: Ck) in z-domain

cuts the unit sphere.

10
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Fig. 2. Two-dimensional Khachian Diagram.

It is of interests to note that both E (xk-3: Ck-1) and
E (xx; Ckx) have the same volumes if gk = - 1/m. After the
algorithm is applied for a sufficiently large number of times, the
center of the ellipsoid tends to move towards the center of the
polyhedron. If xx.] is already in the vicinity of the center of
the polyhedron, then it is clear from Fig. 2 that applying Agxy
< bx moves xyx.] away from the center in e; - e, plane. Thus,
the decision criterion gdes as follows,

(i) If gk < -1/m then skip Agx < bg.

(ii) If for all inequalities gx < -1/m then 2 = Xk-1-
Again, empirical results show that the above decision rule
terminates the interation fairly quickly. Theoretical

justification remains to be seen.
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3.2 Error of the Best Estimate
Suppose, now that the best estimate g is already found. A
simple translation can move the origin of the coordinate system to
2. We want to find a farthest point inside the polyhedron
measured from the origin. Mathematically, the problem is given by
maximizing ||x|| (3.4)
subject to (2.1).
Therefore, it is a convex maximization problem. One of the
vertices of the polyhedron is a.solution. It is clear that only a
finite number of searching steps is required. 1In this subsection,
> a searching strategy is described for m=3.
ti;? Let Vo be a solution of (3.4) and let Vjj denote the ith
- vertex of the jth prismatoid. For each j, let Vj denote a
vertex among Vjj, i =1, 2, ..., 8 that has a maximum norm.

Furthermore, let V denote a vertex that has a minimum norm among

Vir i=1, ..., n. It is clear that we have the following
inequality,

o] < [1]] (3.5
There are three inequalities in (2.1) that are associated with the
vertex V. Except thes2 three inequalities, those other
inequalities that satisfy the inequality described below are
redundant, and they can be discarded.

0 < Aj V<bj (3.6)
To prove the above statement, let's suppose that V,; lies on the
hyperplane given by Ajx = bj. By (3.6) we know that V lies in

between the hyperplane and the origin. Therefore, we have
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191 < []s]] (3.7
Combining (3.6) and (3.7), we coﬁclude that V is also a solution.
Therefore, the inequalities satisfying (3.6) are redundant, and
they can be discarded.

Selecting one relevant inequality that is not from a
referenced prismatoid that is chosen arbitrarily, and two
inequalities from the referenced prismatoid, we form a set of
three simultaneous linear equations in order to find a new
vertex. Two different situations may happen that are described
below.

Case 1 The hyperplane associated with the first inequality is
parallel to the edge formed by intersecting two faces of the
referenced prismatoid. We, therefore, skip this inequality
because no unique vertex can be found from this set of linear
eqguations,

Case 2 The set of three simultaneous linear equations has a
unique solution denoted by U. A decision is made based upon the
following rule.

Rule If '|g|| > ||X|| then skip the first inequality mentioned
above because U can not be a solution. If 'Igll < IIXII then put
U in a pool of vertices including those of the referenced
prismatoid, and proceed to select another set of three
simultaneous linear equations. The new set of linear equations
also contains one relevant inequality that is not from the
referenced prismatoid, and two inequalities from the referenced

prismatoid.

13
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- The same procedure repeats until each prismatoid has been

chosen as the referenced prismatoid. A pool of feasible vertices

N‘.

’j that satisfy (2.1) is generated. The largest norm in the pool of
"2
) . . . .

- feasible vertices is the error of the best estimate.

x 4.  EXAMPLE

'EZ The purpose of showing an example in this section is two-

o fold. First, it illustrates the theorems introduced in the
i previous section. Second, it shows the practical aspect of the .
}j estimation procedure.

,:f To complete the story mentioned in Section 1, one radar,

‘. ALCOR, and five optical sensors, SR1l, SR3, SR5, SR6, and SR9 are
. the calibrated sensors. Their geometric distribution along the
g Kwajalein atoll is shown in Fig. 3.

- ROI-NAMUR
~

ﬂ:::

.,\

)

:'.:'_

- LeGANS sR3 ® ENIWETAK

ﬁt ' SR9 v
®

;7 (] 10 20 30

. . . J KWAJALEIN SR1
N SCALE (km)

“al

= Fig. 3. The Geometric Distribution of Six Sensors.
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A point northeast to the island of Noi-Namur, 90 km up, and

about 240 km away is selected as the true position of the target.
The a-priori information about the accuracy of each sensor is

shown in Table 1. Note that the optical sensors do

TABLE 1
SENSOR ACCURACY STATEMENT
ALCOR SR1l, 3, 5, 6, 9

Range 1 100

(m)
Azimuth 60 33
(urad)
Elevation 74 43

(urad)

not measure ranges, however, an arbitrary range accuracy 100 m is
chosen. The results reported in this section are insensitive to
some numbers larger than 100 m.

The target position vector is transformed to a R-A-E
coordinate system centered at the measurement site for each
sensor. Eight possible vertices are created for each sensor
according to the accuracy statement shown in Table 1. Finally,
coordinate transformations are performed to transfer all vertices
to a common earth-centered, earth-fixed coordinate system. Thus,
six prismatoids in ths space are created, and thirty-six
inequalities are put into a form given by (2.1).

Since all prismatoids have the same center (the true target
position) the intersected polyhedron is symmetric. Therefore, a

periodic solution exists for this artificial example. The

15
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position estimate is computed according to (3.3), and it agrees
with the true position to within fractions of a meter. The errors

of the estimate for various sensor combinations are shown in

Table 2.
TABLE 2
ERRORS OF THE POSITION ESTIMATE

Case Sensors Error (m) ]
1 ALCOR 23 ‘
2 ALCOR + SRS 13
3 ALCOR + All SRS 13
4 One SR Alone 101
5 SR5 + SR3 77
6 SR5 + SR1 56
7 All SRS 56

For this artifical example with a specific geometry, it is
concluded from Table 2 that the combination of ALCOR and one almost
co-located optical sensor (Case 2) can achieve a position estimate
as accurate as the estimate obtained by using all six sensors (Case
3). It is also interested to note that the accuracy of two optical
sensors in Case 6 is the same as Case 7.

S. STATISTICAL INTERPRETATION OF THE EXAMPLE {

It is important to note that the proposed philosophy and method

4
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should not be used to assess the quality of an unbiased estimate.

W
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If it is certain that the estimate is unbiased, a conventional

LIS )
l'.l.

e,

covariance analysis technique is preferred. To illustrate this

point of view, let us assume that the position estimate based on

each of the sensor mentioned in the previous section is unbiased
16
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with equal variance. The combined variance is reduced to one sixth
of the individual variance. Applying the proposed error definition
we do not obtain any error reduction.

On the other hand, if it is certain that the estimate is
biased and there is no‘way to compute the bias then the proposed
error computation may be used to assess the amount of the bias of
the estimate. The observability condition of an estimation
problem in general is much easier to be examined than the
existence of an unbiased estimate. Since we know that
observability is necessary for the existence of an unbiased
estimate, the proposed philosophy and method could be very

valuable for assessing the quality of an estimate of an

unobservable system,

6. SUMMARY AND CONCLUSION

We first explain why a non-model based estimation procedure
is preferred in some occassions. We then define the best estimate
and its associated error as the geometric center and the distance
of the intersected error volume derived based on a number of
individual sets of measurements and their own a-priori knowledge.
We discover that Khachian's algorithm can be used to find the
geometric center of a finite dimensional polyhedron. Once the
center is located, a method is introduced to find the distance of

the polyhedron. The philosophy and the technique are applied to a

set of sensors located along the Kwajalein atoll for evaluating

each sensor's contribution to determining the position of a target.

.......................
...................
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